ENIG と HASL の対照を探る

ENIG と HASL の対照を探る

プロの回路基板を作成したことがある場合は、おそらく ENIG と HASL の表面仕上げのどちらかを選択するよう提示されたでしょう。 これらの仕上げは、はんだ付け性からコストまで、いくつかの点で異なります。 一部のメーカーには推奨オプションがありますが、これら 2 つの違いについて知りたいかもしれません。

HASL は、溶けたはんだのプールに銅を浸すことを伴う表面仕上げ方法です。 その後、余分なはんだを除去し、はんだが硬化する前に圧縮熱風ナイフのセットを使用して仕上げを平らにします。 この技術により、銅を保護する堅牢なコーティングが得られます。 組み立てプロセスが簡素化され、多くの利点があるため、コンタクト メッキ戦略として広く使用されています。

HASL は優れた技術ですが、欠点もあります。 PCB メーカーは、他の方法に比べて多くの利点があるため、ENIG を金めっき戦略として一般的に使用します。 ENIG は、大きなボールグリッド パッケージに適切に接着するために不可欠な、より平坦な表面を生成します。 ENIG ボードの製造プロセスに鉛が含まれていないため、よりクリーンで安全、環境的に持続可能な製造プロセスが可能になります。 さらにエアナイフの段差をなくすことで基板の反りを軽減します。 特に薄い場合は、ある程度の熱耐久性が向上します。

生産プロセスの一環として、機能、耐久性、外観を向上させるために PCB に表面仕上げが施されます。 このプロセスには、コーティング、電気めっき、研磨などの技術を使用した PCB 表面の処理が含まれます。

スタックビアとは何を意味しますか?

多くのビアが積み重ねられてスタックビアを形成します。 すべてのビアは最初にドリルで開けられ、その後金属化され、電気接続を確保するために底部と上部に小さな環状リングが維持されます。 環状リングは非常に小さく、薄さが約 0.002 インチであることが多く、高精度の位置合わせが必要でした。

スタックビアは、相互に積み重ねることができ、スルーホールビアよりも回路基板上の占有面積が小さいため、より実用的であるだけでなく、高密度基板の効果的な配線にも適応できます。 スタックビアを効果的に利用することで、層接続における完全な柔軟性が可能になります。 さらに、ビアに関連することが多い寄生容量も減少します。 確実なビア間接続を保証するには、スタックビアを備えた PCB の製造にはさらに多くの手順が必要です。

たとえコストがわずかに高くても、配線の柔軟性が向上すると、設計を効果的に配線するか、配線する方法がないかの区別がつき、優れた設計ソリューションが得られます。 当社のエンジニアリング チームは、コンポーネントの密度が増加し、基板の表面積が減少し続けるにつれて、このレイアウト方法の適用がますます実現可能になり、場合によっては必要になると予想しています。

スタックビアの製造

スタック ビアは、スタッガード ビアよりも製造プロセスに多くの段階を必要とします。 したがって、さらに複雑になります。 ここでは、多数のビアが積み重ねられています。 複数のレイヤーを接続する際に占有スペースが少なくなります。 このように相互に積み重ねる前に、各ビアにドリル加工が施されてからメッキされます。 下部と上部には、2 つの環状の幅の狭いリングが用意されています。

下部は電気接続に使用され、上部は正確な位置合わせを示します。 デザインは 3 つの異なる行為によって構成されます。

  • 銅穴充填
  • 平坦化
  • スタックビアによる銅充填
  • さらなるイメージング

すべてのスタックされたビアを埋めるために、電気メッキされた銅が使用されます。 信頼性の高い電気接続を保証するだけでなく、構造的な安定性も提供します。 場合によっては、堆積された銅に欠陥が見つかることがあります。 ここではいくつかの課題について説明します。

銅の堆積が不適切なため、ビアがボイドになる場合があります。 構造内部では、このような空隙により局所的な応力が発生します。 結果として、スタックされたマイクロビアの信頼性も同様に損なわれる可能性があります。

無電解低品位銅は、マイクロビアの下のターゲット パッドとそのベースの間の結合を悪化させます。

ビアは PCB 設計にどのような影響を与えるのでしょうか?

ビアは、単純な回路基板を操作する場合には実際には必要ありませんが、多層基板を操作する場合には非常に重要です。 スタックビアは、さまざまな方向に互いの上を通過したり、下を通過したりできる柔軟性があるため、多層基板上で高いコンポーネント密度を実現するのに役立ちますが、トレース密度も増加します。 多数のトレースは、垂直接続要素として機能するビアのおかげで互いに接続できます。

多層 PCB の配線プロセスにビアが使用されない場合、表面実装のコンポーネントは回路基板上に密集して詰め込まれてしまいます。 PCB 層間の電力と信号の転送もビアによって容易になります。

ここでは、回路基板におけるスタック ビアの効果や用途と、いくつかのビア形式について説明します。

信号ルーティング

大多数の PCB は、信号配線のためにグリッド上に配置されたスルーホール ビアを採用しています。 マイクロビアは高密度の基板に使用されますが、高密度の基板には埋め込みビアまたはブラインドビアが必要になる場合があります。

エスケープルーティング

大型の SMT コンポーネントの場合、通常、ファンアウト配線として知られるエスケープ配線を提供するためにスルーホール ビアが使用されていました。 それにもかかわらず、状況によっては、マイクロビアまたはブラインドビアが使用される可能性があります。 パッド内ビアは、ピン数の多いボール グリッド アレイを備えた非常に高密度のパッケージに必要です。

電源配線

グランドおよびパワーネットに使用されるビアは、より大きな電流を流す役割を果たすため、ここではより幅広のスルーホールビアが使用されることがよくあります。 ただし、ブラインド ビアもオプションです。

温度調節

熱を放散するために、スルーを利用してコンポーネントが接続されている内部プレーン層を介してコンポーネントから熱を伝達します。 サーマルビアはこの容量に利用されるビアであり、この目的を実行するにはより大きなブラインドビアまたはスルーホールが必要です。

千鳥配置マイクロビアとスタック配置マイクロビアの違いは何ですか?

 


アスペクト比の小さなマイクロビアをレイヤーごとに作成するこの方法により、最初はデザインに多くのブラインド ビアや埋め込みビアを含めることに抵抗があったにもかかわらず、さまざまなスタック アプリケーションでマイクロビアを実行できるようになります。

埋め込みビアは単に互いの上に積み重ねられるか、またはブラインド マイクロビアが埋め込みビアの上部に積層される場合があります。 HDI PCB では、これは多くの層にまたがる一般的な方法として知られています。

このスタック内の次のビアが実装およびメッキされるときに確実な接触を保証するには、スタック内に存在する内部埋め込みマイクロビアを導電性ペーストを使用して充填し、その後メッキする必要があります。 千鳥配置マイクロビアは、後続の層に存在するマイクロビアが通常互いにオフセットしている積層マイクロビアのオプションとして機能します。

基板の多くの層は、相互に直接接触していませんが、千鳥状のビアによって接続されています。 上下のレベルでは位置がずれているように見えます。 千鳥配置のマイクロビアに必要な手順は大幅に少なくなります。 このようなレーザーで開けられたビアは、実際には、次に開けられる穴が前の穴の隣にないため、銅の充填を必要としません。

千鳥配置ビアは基板の層をリンクしますが、互いに直接接触しません。 上のレベルと下のレベルでは、通常、その位置がオフセットされます。 千鳥状マイクロビアに必要な設計手順は少なくなります。 レーザーで開けたビアでは、後続の開ける穴が最初の穴の隣にないため、実際には銅の充填は必要ありません。

スタックビアの利点は何ですか?

多くのビアが積み重ねられてスタックビアを形成します。 すべてのビアは最初にドリルで開けられ、その後金属化され、電気接続を確保するために底部と上部に小さな環状リングが維持されます。 多くの場合、環状リングは非常に小さく、幅が 0.002 インチと非常に狭いため、高精度の位置合わせが必要です。

また、スタックビアは、一方のビアを他方の上に積み重ねることができるため、スルーホールビアよりも回路基板上で占める面積が小さくなり、高密度基板がより柔軟で実用的になる可能性が高まります。

スタックビアを効果的に利用することで、層接続の完全な柔軟性が可能になります。 さらに、ビアに関連することが多い寄生容量も減少します。 確実なビア間の接続を保証するには、スタックビアを備えた PCB の製造にはさらに多くの手順が必要です。

それにもかかわらず、費用が多少高くなっても、配線の柔軟性が向上すると、デザインを効果的に配線できるか、それを達成できないかの区別がつき、結果としてデザイン ソリューションが向上します。

今日の小型化、およびいくつかのアプリケーションにおける高い信号伝送性能と拡張性を考慮すると、スタックドビアは、PCB を製造する際の密度とサイズの問題をさらに強化する技術であり、どちらも重要です。

アスペクト比が 1:1 を超えるブラインド ビアがあり、穴あけ要件が多数の層にまたがる場合、スタック ビアは最も信頼できる内部接続オプションとなります。

単一の中心の周りに複数のビアが一緒に作成され、スタック ビア、積層埋め込みビアおよびブラインド ビアとも呼ばれます。 中心が異なる積層ビアは、千鳥配置ビアとして知られています。 スタックビアは、スペースの削減と密度の向上に加えて、内部接続、ルーティング機能の向上、寄生容量の削減という点で柔軟性も向上します。

結論

要約すると、スタックビアは、相互に積み重ねることができ、スルーホールビアよりも回路基板上の占有面積が小さいため、より実用的であるだけでなく、高密度基板の効果的な配線にも適応できます。

関連記事

無料見積もりをする

プリント基板製造・組立サービス

おすすめの記事

ホンハイ EMSとは?特徴やメリット、使い方を解説

ホンハイEMSは、最近注目を集めているEMS(電気刺激筋肉運動)の一種です。EMSは、電気刺激を用いて筋肉を刺激し、運動効果を高めるトレーニング方法です。ホンハイEMSは、特にその高い効果が注目されています。 ホンハイEMSの特徴は、高周波の電気刺激を用いて筋肉を刺激することにあります。これにより、従来のEMSよりも筋肉の収縮がより強くなり、トレーニング効果が高まります。また、ホンハイEMSは、筋肉だけでなく、脂肪も効果的に燃焼することができるため、ダイエットにも効果的です。 ホンハイEMSは、スポーツ選手やトレーニング愛好家だけでなく、一般の人々にも注目されています。その理由は、短時間で効果的なトレーニングができるためです。また、ホンハイEMSは、筋肉や関節への負担が少なく、怪我のリスクも低いため、安心してトレーニングができます。 ホンハイ EMSとは何ですか?

表面実装SMTとは?- SMT技術の基礎と応用

表面実装(SMT)は、現代の電子機器に欠かせない技術の一つです。SMTは、表面実装技術を用いて、電子部品を基板に取り付ける方法です。SMTは、従来の手作業による部品取り付けに比べて、高速で正確な製造が可能であり、製品の小型化や高密度化にも寄与しています。 SMTは、従来の部品取り付け方法であるTHT(Through Hole Technology)に比べて、多くの利点を持っています。THTは、部品を基板の穴に挿入し、裏側ではんだ付けする方法です。一方、SMTは、部品を基板の表面に直接はんだ付けするため、基板の穴が不要で、部品の小型化や高密度化が可能です。また、SMTは、自動化された製造ラインで高速で生産が可能であるため、コスト削減にも寄与しています。 SMTは、現代の電子機器に欠かせない技術であり、高速で正確な製造が可能なため、製品の小型化や高密度化にも寄与しています。THTに比べて多くの利点を持つSMTは、自動化された製造ラインで高速で生産が可能であり、コスト削減にも寄与しています。SMTは、今後も電子機器の進化に欠かせない技術として、ますます重要性を増していくことでしょう。

IPC 2221B
IPC 2221B: 基板設計ガイドラインの最新情報

IPC 2221Bは、プリント基板の設計に関する国際標準規格であり、エレクトロニクス産業において広く採用されている規格です。この規格は、基板設計者や製造者が、高品質かつ信頼性のあるプリント基板を設計・製造するためのガイドラインを提供しています。IPC 2221Bの内容は、基板材料、パターン設計、ワイヤリング、検査方法など、プリント基板設計および製造全体にわたる幅広い分野をカバーしています。 IPC 2221Bの目的は、エレクトロニクス業界におけるプリント基板の品質と信頼性を向上させることです。そのため、この規格は定期的に見直され、最新の技術動向や業界のニーズに応じて更新されることが求められます。2021年にリリースされたIPC

セルラーアンテナはネットワーク受信をどのように強化するのでしょうか?

電気通信のおかげで、私たちは愛する人たちと連絡を取り合い、インターネットにアクセスし、世界中で何が起こっているかを知るためにできることは何でもできるようになりました。 電気通信の成功の大部分は、電気通信プロバイダーのネットワークの優れたパフォーマンスに依存しています。 通話中に回線が切れたり、ネットワークが切断されたりするような障害が発生したことがあるかもしれません。 その場合、論理的な説明は 1