タッチセンサー回路について知っておくべきことすべて

タッチセンサー回路について知っておくべきことすべて

五感のどれかが正常に働かなくなるとどうなるでしょうか? 大好きな食べ物を味わうことも、大好きな花の香りを嗅ぐこともできなくなります。 物理学では、センサーも同じ働きをします。 電子機器には、周囲で何が起こっているかを検出できるセンサーが必要です。 Willem Von Simens は 80 年代に史上初の温度センサーを発明しました。 この発明の後、他の物理学者がいくつかの新しいバージョンのセンサーについてブレインストーミングを行いました。

その後、90 年代初頭に IR センサーが登場しました。 テクノロジーは急速に進歩しているため、各国の経済を安定させるには新しい発明がこれまで以上に重要であることは誰もが知っています。 現在、重要な領域は、湿度、煙、動きを検出するさまざまな種類のセンサーに依存しています。 センサーには、アナログとデジタルの 2 つの大きなカテゴリがあります。 ただし、時間の都合上、すべての種類のセンサーについてご紹介することはできません。 そこで、この投稿ではタッチ センサーを取り上げました。

タッチセンサー回路とは何ですか?

タッチセンサーは素晴らしいデバイスです。 これは、デバイスを通じて接触を感知したいときにそのようなセンサーを使用できるためです。 かなり明白ですよね? 主にタッチしてON/OFFすることで通常のスイッチとして機能します。 これらは、直感的なインターフェイスにとって重要です。 タッチ センサーを触覚センサーと呼ぶこともできます。

  •  

タッチセンサー回路の特徴

  • 構築は簡単です
  • 手頃な価格で生産できます
  • 大量生産も可能です
  • スイッチの代わりに使用しても信頼性が高くなります。

タッチセンサー回路の種類

  • 静電容量センサー: これらはデバイスの静電容量を決定するためのもので、主に小型のポータブル デバイスに役立ちます。これらは耐久性が高く、摩耗による損傷に大きく耐えます。
  • 抵抗センサー: これらのセンサーは、優れたパフォーマンスを得るために魔法のような電気特性を必要としません。 彼らの仕事は、観察中のあらゆる表面上の圧力を検出することです。

タッチセンサー回路の原理

タッチセンサーには、自然なパフォーマンスを実現するための特別な動作原理があります。 動作原理はスイッチの動作原理と変わりません。 それらに触れたり、何らかの圧力を感知するとセンサーが作動し、閉じたスイッチと同じように動作します。 センサーから圧力を取り除くと、センサーは開いたスイッチのように動作します。

静電容量式タッチセンサー回路の働き

静電容量式タッチセンサーについて話す場合、それらは一対の平行な導体で構成されます。 これらの導体の間には絶縁体が配置されています。 この場合、導体は実際にはコンデンサです。 センサーに触れると、プレートもタッチに反応します。 私たちの指はセンサーの導電体であるため、静電容量値が増加します。 コンデンサのデフォルト値は C0 です。これは、静電容量に何らかの変化が生じると変化することを意味します。

抵抗膜式タッチセンサー回路の仕組み

次に、抵抗膜式タッチセンサーについて説明します。 この場合、彼らの仕事は圧力を検出することですよね? したがって、同時に接触を感知できるように、特定の表面にかかる圧力の量を決定します。 静電容量センサーと同様に、抵抗膜タッチセンサーにも 2 つの導体が存在します。 プレートには、優れた導体として機能する酸化インジウムスズ層が付いています。 ただし、これらのプレートの間には少しスペースが必要です。 これらのプレート間にも電圧が存在します。 表面に圧力を加えると、プレートの底まで圧力が感知されます。 電圧が低下し、センサーがそれを感知します。 一般に、このようにして圧力を使用してタッチを検出します。

タッチセンサー回路の応用例

タッチ センサーが私たちの日常生活を楽にするのにどのように貢献しているかまだご存じない方のために、このセクションではタッチ センサーの応用について説明します。 以下で見てみましょう。

携帯電話にはタッチセンサーが使われています。
家庭用電化製品や家電製品もタッチ センサーで動作します。
タッチ センサーは、デバイスの構築において距離と圧力を測定するために使用できます。
抵抗タッチ センサーは、わずかな圧力や接触を検出するのに役立ち、タッチパッドやキーパッドなどの用途に使用できます。

タッチセンサー回路のデメリット

場合によっては、タッチ センサーに不具合が発生し、誤警報などの誤った結果が生成されることがあります。 このため、メンテナンスを理解し、信頼性の高い工業グレードのタッチ センサーを毎回使用することが重要です。

 

最高のタッチセンサー回路

・4017IC

ほとんどのプロデューサーが依存している標準的なタッチ センサーがいくつかあります。 その 1 つが 4017 IC です。 それがどのように機能するのか、そしてプロデューサーの最初の選択肢であることがなぜそれほど特別なのかを見ていきます。

ほとんどの IC には通常 5 ~ 10 個の出力があります。
出力はピン 3 から始まりピン 11 で終わります。 ただし、これは IC の種類によって異なる場合があります。
この範囲には、単一のピンが正のパルスを検出するたびにピン全体に上位ロジックを転送する役割を果たすすべての出力が含まれます。
シーケンスは必ずしも最後のピン (ピン 11) で終了する必要はありません。 いつでも好きなピンで停止できます。
シーケンスがこの特定のピンに到達したときにサイクルを停止する必要があるように、追加のピン 15 が必要です。 新しいサイクルは同じになり、シーケンスも同じ順序に従います。

働く

このサイクルを引き起こす要因の 1 つは、プレートに触れたときです。 ピン 14 に触れると、ピン 14 に現れる正のパルスが生成されます。 ここで、スイッチをオンにし、上位ロジックがピン 3 に存在すると想像してください。 ピンはまだ何にも接続されていません。 同時に、pin2 をリレーに接続しました。

現在リレーはOFFです。 プレートに触れると、ピン 14 の正のパルスがピン 3 からピン 2 へ向かう出力シーケンスを生成し、スイッチをオンにします。 リレーや負荷によって変化しない固定値です。 プレートに 2 回目に触れると、シーケンスの順序はピン 2 – ピン 4 になります。これは、IC にピン 3 のロジックを変更させることを意味します。 リレーと負荷がオフになります。

関連記事

無料見積もりをする

プリント基板製造・組立サービス

おすすめの記事

はんだ付け回路の基礎知識
はんだ付け回路の基礎知識: 初心者向けのガイド

はんだ付け回路とは、電子機器において非常に重要な役割を担っています。はんだ付け回路は、電子部品を基板に取り付けるために使用されます。はんだ付け回路は、基板の上にはんだを溶かし、電子部品を接続することで作成されます。 はんだ付け回路は、電子機器において信頼性の高い接続を提供します。はんだ付け回路を使用することで、電子部品を基板に取り付けることができ、電気信号を効率的に伝達することができます。はんだ付け回路は、電子機器の性能を向上させるために重要な役割を果たしています。 はんだ付け回路は、電子機器の製造において欠かせない技術です。はんだ付け回路を正しく行うことで、電子機器の信頼性を向上させ、性能を最大限に引き出すことができます。 はんだ付け回路の必要性 はんだ付け回路は、電子機器の製造において欠かせないものです。はんだ付け回路を使用することで、部品同士を接続し、回路を構成することができます。以下に、はんだ付け回路の必要性について説明します。

表面実装スルーホールとは
表面実装スルーホールとは?基礎知識と応用例

表面実装スルーホールは、電子部品を基板に取り付けるための一般的な方法です。この方法は、部品を基板の表面に取り付けるために、表面実装技術を使用します。実装された部品は、基板の表面に露出し、外部から見えるため、非常に見やすくなります。 スルーホール技術は、表面実装技術とは異なります。スルーホール技術は、基板の表面に穴を開け、部品を穴に通して取り付けることによって実装を行います。この方法は、表面実装技術よりも信頼性が高いため、高い周波数帯域で使用されることがあります。 表面実装スルーホールは、現代の電子製品で広く使用されています。この技術は、小型化された電子製品に特に適しており、高い信頼性と性能を提供します。表面実装スルーホールについての理解を深め、この技術の発展に貢献することが、今後の電子産業の発展に不可欠です。 表面実装技術とは 表面実装技術は、電子部品を基板に直接実装する方法で、電子機器の小型化と高密度化に貢献しています。スルーホール技術と比べて、表面実装技術は、実装面積を大幅に削減できます。この技術は、高速通信や高周波回路などの高度な電子機器に不可欠です。